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In this paper, a class of essentially conservative scheme are con-
structed and analyzed. The numerical tests and thearetical analysis
show that although these schemes can not be written in the usual
conservation form, but the numerical solutions obtained with these
schemes can converge, as the mesh size tends to zero, to the physical
salution of conservation laws.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The estimation of the total variation of numerical solu-
tions is an important part in the proof of the convergence
property of many finite difference schemes for hyperbolic
conservation laws. To ensure that the total variation of
numerical solutions is uniformly bounded, a variety of TVD
(total variation diminishing) schemes have been con-
structed and widely used in the numerical computation of
conservation laws [ 1-3]. The advantage of TVD schemes is
its high resolution for shock waves. Unfortunately, the TVD
property and the second-order accuracy of a difference
scheme is inconsistent. In the one-dimensional case, the
inconsistency means that you cannot construct a TVD
scheme, meanwhile which has uniformly high-order
accuracy. In the two-dimensional case, the inconsistency
means that a TVD scheme is at most first-order
accurate [47]. To obtain uniformly high-order schemes, a
series of work has been done by Harten, Osher, Enquist,
Chakravarthy, who construct an ENO (essentially non-
oscillatory) type scheme [5, 6], and Shu who constructs a
TVB (total variation bounded) scheme [7]. These schemes
can obtain uniformly high-order accuracy and do not
generate too much oscillation near strong shock waves;
however, there are still some problems unsolved, among
which are the difficulty to estimate the bound of the total
variation of numerical solutions of ENO type schemes, the
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difficulty to extend the same idea to the high-dimensional
case, and the difficulty to prove the entropy conditions of
the schemes.

The purpose of this paper is to develop a new kind of
scheme which should not only give good results in real com-
putations but also have good theoretical properties. These
schemes are called essentially conservative ones because
they cannot be written in the usual conservation form; but
it can be proven that the numerical solutions of these
schemes converge to the weak solution of conservation laws
as the mesh size tends to zero. In Section 2, we give some
definitions and statements. In Section 3, we construct a
uniformly second-order essentially conservative scheme and
give some theoretical analysis for scalar case. Section 4 is for
the system of hyperbolic conservation laws. Section 5
presents some numetrical results of these essentially conser-
vative schemes and some conclusions of this paper.

2. DEFINITIONS AND STATEMENTS

To simplify the analysis, consider the following one-
dimensional conservation laws,

du | 3fw) _
at ox
u(x, 0) = up(x),

0, (x, Ne[0, T]xR! 2.1

xe R, (2.2)
where = (#,, . )" £u) = (fi{t), s £ ()T

Suppose the finite difference approximation of (2.1) ~
(2.2) can be written in the operator form as

w'tl=C(dt, dx, u")
{2.3)

1’ = u,,

where u" = {47}, 4t and Ax are the time step and the spatial
mesh size, respectively.
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Let

uylx, ty=u’, if (x, YeQ,,

4 4:
Q,={x,— S x + x4 A1), x=idx
2 2
DeFiNITION 2.1, Suppose u,—> . If u is the weak
solutton of Eq. (2.1); i.e., for any test function ¢ € C °(R?),
equality

falrd oo )
j-[[o,r]xk I:“ o + f(u) 5x:l dxdr=0

is valid, then scheme (2.3) is called an essentially conser-
vative scheme,

Obviously, the usual conservative scheme, such as a Lax
scheme or a Godunov scheme, must be the essentially con-
servative scheme, but an essentially conservative scheme is
not necessarily a conservative scheme.

If the limit solution u satisfies the entropy condition, ie.,
for any entropy function U(ux) and entropy flux F{u) of
Eg. (2.1), inequality

dlU  oF

i<
o Tax S0

is valid in a distribution sense; we call scheme (2.3) an
entropy scheme.

In a scalar case, the x total variation of numerical solu-
tions, for any fixed ¢ > 0, is defined as

j+l,f2ui

TV(u") =Y |47
J

4y p =y — g

To prove the convergence of difference schemes, a bound

on the total variation of 1" is often needed. Since 1983, many

high resolution TVD (total variation diminishing) schemes
have been constructed which satisfy

TV(u"+ )< TV(u").
If the initial data ug(x)e BV(R), it can be deduced that
TV Y < TV(ug) < co.

Thus, a convergent subsequence of numerical sotutions can
be obtained. Unfortunately, a depressing has been proved
by Goodman and Leveque, that a two-dimensional TVD
scheme is at most first-order accurate [4]. Even in a one-
dimensional case, it is also difficult to construct a uniformly
high-order accurate TVD scheme.

To obtain uniformly high-order accurate scheme in one-
or two-dimensional case, the restriction on the total varia-
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tion of numerical solutions must be relaxed. In this paper we
only ask that the numerical schemes satisfy

TV(w") <K,

where K is a constant which does not depend on At and 4x,
this kind of scheme is called a TVB (total variation
bounded) scheme [4].

3. THE SCALAR CASE

We start our construction [rom the following scalar
hyperbolic equation:

du  dflu)
at e

(3.1)
The first-order three points TVD scheme of Eq. (3.1) can be
written as

1
“;+ = “}' - l(hH 12— hjﬁ 1/2)

(3.2)
where A=At/Ax; h; 1, = A(u;, u;, ) is the numerical flux,
which is consistent with Eq. (3.1} in the sense that A(u, u) =
Su).
Let ¢;,,, be the difference between k., and the
Lax-Wendroff numerical flux denoted as 4}.7}%; ie.,
¢j+l/2=h}‘+_l)¥_hj+l,f2! (3.3)
where h}“:],g = %[f:u + S Hay, 1/2}2 d;puland g,y
is the local characteristic speed

L=k .
%, lr Aj+1’,'2u#:0,
_ j+ 12U
G 2= of
- s i A, u=0.
au g J+ 12

In smooth regions of u, ¢, ,/, satisfies
¢j+l/2_¢j71/2=0(£’x2)- (3.4)

Consider the following finite difference approximation of
Eq. (2.1):

u;.’+1=u;'—).[hj+ IIZ_hj—l,t’l)-i_j'Qj’ (3'5)
. |47 pul 147_5ul
. M 1 it , J=1/
o, min { max ( T4y e
x 4x?, |¢j+1/z_¢j—1/2|} S; (3.6)

S;=sign(¢; 1o —b_12), M is a positive number.
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@, can be locked upon as an improving term to the first-
order scheme (3.2). Scheme (3.5)-(3.6) cannot be written in
conservation form, but it is essentially conservative.

THEOREM 3.1,  The finite difference scheme (3.5)-(3.6) is
an essentially conservative scheme.

Proof.  Scheme (3.5)-(3.6) can be written as

n+1 n
4 _“j+hf+1f2—hj—1/2=&
Ax

At Ax

(3.7)

Choose a test function ¢(x, 1)e CF([0, 7] x R"), multi-
ply (3.7) with 4t 4x @7, and sum to j and »n; we have

n—1 n ”
Q=0 e, e
—Z( B g f)dxm
Q,
-“Z(pJA’AxAt

From the definition of Q,, it can be deduced that

Z‘»"’; j?; AxAtl<Mz |} [{dx + 14, .l

J.n

+ |4, ul} Ax A¢
So, if {u]} 5, u, we have
Q" Ax At

=0 {(as 4r -0, 4x - 0),

which implies that

n—1 n n
‘P; _9"; n i1 — 9

(as 4r—=0, dx-0).

The consistency of £, , ,/, gives

do o b\
'H‘[O‘T],.;Rl (u EY + flu) ax) dxdr=0. |

To simplify the analysis, we choose 4, ;,, to be the first-
order Roe’s scheme, ie.,

;+1/2 z{f+.f:;+1 +1,'2|)Aj+1,'2u§

the analysis for other cases is similar. We have

1
¢j+1/2=5 |ﬂj+1/21 (1 _/1|aj+l,'2|)dj+lj2u-
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In the smooth regions of function v, if the inequality

F Ju
a{la(l—l!al)a—x}<M (3.8)

is valid, then Q, satisfies

Qj = (¢’j+ 1727 ¢‘j— 1/2)

as At and Ax are sufficiently small. Thus

M;Jrl = u - A(hL+ 1% h}— 1‘:‘5)
i.e., the scheme is second-order accurate. In the computa-
tion we can choose M large enough so that inequality (3.8)
is valid everywhere in smooth regions of ; then the scheme
is second-order accurate everywhere in smooth regions of u.

To keep it nonoscillatory in the computation of discon-
tinuous solutions, we modify ¢, , ,,, as

#;41p=minmod(a;_

R
+DJ.+1;2, 12 O3z — D) (3.9)
_1
G =3z a7, pl(1—1 a2 ) AT, o
L .
Dy, ,,=minmod
X(6; 1= 0, 32,0, 12— 0;_12) (310)
& .
D}, =minmod
X (0432012 Ojusp— Giaap)y (3.11)
where
sign{x,) min(]x, [, ..., [xc|}
minmod(x,, .., X,) = if x,,.., x, have same sign
0, else

(3.9)}-(3.11) imply that, in smooth regions,

¢j+ 2= % |a;+ 1/2! (1—-4 |a;+ 1/2')A;'+ Ly O(Ax3)

(see [8] for details).

Thus scheme (3.5)-(3.6) with ¢,, ,,, being modified as
(3.99-(3.11) is still second-order accurate e¢ven at the local
extreme points of w.

THEOREM 3.2. Scheme (3.5)-(3.6) with ¢, ,, being
modified as (3.9)-(3.11} is monotonicity preserving under the
CFL restriction

g=max ila;, »|<0.5. (3.12)
g

Proof. (0, can be written as

Qi=—eld; 1o~ 9 10)

O0<ex],
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s0 that scheme (3.5)—(3.6) can be written as

1 b7 —
up = u Ol At
- Cf— pdi_ipt—ed ot &P _ 125 (3.13)
C+ 2= (]af+1,fz|iaj+1,f2)- (3.14)
Therefore,
1 — —
A7 L pu=1(1- Cj-:- w2~ Crp) dfppu
- +
+Clapd] 1pu+Clypd] oH
—Aid .+ 2420, 1 p— A8,

where 0 < A, A, A3 <1, (3.10), (3.11), and (3.13) imply
that

A1¢j+1}2=516j+1/2
A2¢j+3j2 =&0,1p— 830,112

A3¢jm1/2 =840, 172 €50, 4 3424

here 0 e, 85,6551, 0<e,, 8,52 S0

H4 = it n
4} +1/z“ (1 £4C 1) A7y 1 pu
- 0
+(Captes C,r+'s,'2)A;+3/z”

+ (CJ,,,,2+83,CJ_U2) A _\pu

0
1-2 Iaj+l,‘2| *32Cj+1,nz—

+2S,C1+U2A‘,.+”2u,

where C7, 1 =34 154 102] (1 = 4 @54 151} When CFL con-

dition (3.13} being satisfied, we have
Cliin 20,

Cji;_l,t'z;os J'=0) ilx iza AL

and
] 0 0
I =Aa1pl—6C/ 1 p—aChip
1
zl-Ala; pl—320,

which imply that if 47, ,,u (=0, £1, £2, ..), have same
sign, then 47} u (j=0, £1, £2,..), also have same sign
as 4], »u, that means the numerlcal solutions can preserve
the monotonicity of the initial function wy(x). |}

Remark. In the proof of Theorem 3.2, if €/ ;, and
C;_,, do not equal zero at same time, for example,
C_;+3‘,'2 #O, i.e., (IR Y] <0, then

— ¢ n
#1327 =86C 0 30 AU} 325
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where 0 €&, < 1; thus

47:11/2“= (1=21a;, 1l — 240, 1) 474 o1t

o 1
+2£]C}-+U2A;-+”2u

- 0 0
F(Ciisn—8C e apntesClian) A apu

+Cj+—l,‘2 Al U
s0, only if

p=max ila;, plsl
s

we have

V= Ala; i _34C?+ pz(1—4 Ilaj+1,f2||)2>0

and

s+t C +3/2+85C P+ 32

24 |aj+3/2| -3 la; ., 32| (1 -4 |aj+3,'25)

=0

so the CFL restriction (3.12) should be satisfied only when
C,s,and C_, , equal zero at the same time, which occurs
at sonic points in the rarefactive regions, where the charac-
teristic speed |a;, ,/»| is near zero. So in real computation,
we can choose u larger than (.5, even near one.

THEOREM 3.3. Assume that ug(x)e L'(R*)n L*(R!
BV(R"), and

iIa)

g

dx =9, f

x| > B,

then under the CFL restriction (3.12), we have

1. The numerical solution of scheme (3.5)-(3.6) satisfies

max
—o0 < j<

[uf | < Ko(T).

2. Scheme (3.5+-(3.6) is TVB.
Proof. Scheme (3.5)-(3.6) can be written as

a4+l _
Mj =

n + " — n
L[. +Cj+l/2 Aj+1/2u—cj_1/2 Aj_1/2u+AQj
+ - +
=(1-CL,—CLip)u;+CJl puf,

+ 7 pui_ + 40,
C?, »are defined as (3.14). When (3.12) is satisfied we have

+ - + -
I_Cj+1/2_cjflf'220’ _‘C;‘+1/2;O’ C 1/2/
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Thus

e} T < (V= C = Cilip) 1

+Chp W+ Clp [+ 410

< max |+41Q),

—n < j
SO

max |u;t'i< max  juf|+1]Q;l
<jew

—_0 <j< o —o
From the definition of Q;, we have

|Q;| < AM(Ax + |47,y pul +147_ yz1) 4x,
50

max [|#;*![<  max
— e j oo —mo < o

[t} | +AM Ax?

+4iM Ax  max |ul|

D 1

=(1+4M 4¢) max

—o0 < fw o0
Let K, =4M, then we have

max |u}| <(1+K, 41)" max |u]|

—0o < f oo —o0 < j oo 4

y
+Tx[(1+K1 A —17;
< Ko(T)

here Ko(T) = e g | 1= + (Ax/4) (51T~ 1),
Now, we prove 2. Let i#;=u} — A(h], . —h]_,,); then

TV(E)< TV(u").
Thus
TVt < TV + 243, 10,1
i
< TV(u") + 2AM
x D

|fdx| < B+ 6ndx

< TV{(u") + 4M(B + 6n Ax) At

(dx+2 |A}’.’+. 2l ) 4x

+4AM A1 Y |47,
E)

= (1 +4M A1) TV(u")
+4M(B + 6n dx) At
< (1+4M A1) TV (")

T %)
+4M(B+— sup |—f)/_ft
6# |u|<KQJau

S(1+K,40) TV(") + K, 4t,

|u] |+ M Ax At.

where K, =4M(B + (T/6p) sup,, -, 10f/0ul). So

K
TV < (1+ K, 4ty TV(up) + Fz [(1+K, 46)"=1]

K
SeRTTV (o) + L2 (97— 1);
1

i.e., the total variation of numerical solutions is uniformly
bounded. |

About the entropy condition of scheme (3.5)-(3.6), we
have

THEOREM 3.4. Suppose scheme (3.2) is a montone
scheme; then the a.e. bounded limit, as At - QO and Ax — 0, of
the numerical solutions of scheme (3.5)-(3.6) is the unique
solution of Eq. (3.1). We still assume that uy(x)e L'(R")n
L*(R"Y~ BV(R"), and

duq

=0 ]
ax i

x| > B,

Proof. We only need to prove that the limit solution u
satisfies inequality

a_U + a_F< 0
ot ax
in the weak sense, where

Ulu) = sign{u — c)(u—c),
Flu) =sign(u —c)(f(u) — f(c)).
Deﬁl_le

¢ v u=max{c, u}, cAu=min{c, u}

and
H \p=Hu,u)=hevu,cvu, )
—heAu, e Ay
then we have

H(u, u)= Flu}=sign(u — c)(f(u) — f(c)).
Let

o~ H m
di=uy — ARl — ).
Since scheme (3.2) is a monotone scheme, thus

1 - " 1
A_t (U(uj)_ U(Uj)) +E {Hj+ vz Hj—l,‘Z) <0.

See [11] for further details.
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Choose a test function @(x, t)e C;° and ¢ = 0; we have

Lo
=Ew;‘[

in

Ulu?)

J

U(u}""')—

At

U(uf”)—
At

+ Hivro= M) "2} A1 Ax
Ax

Utiy) —
At

U(ﬁj-’)+ Ulu})

e o] gy g
Ax

Ulu"t Y= UG"
QZ(p_}'(—J%’—JAtAx

<Y ¢} !%lmAx

N

S0

H
(Pj+l

— @7 -7
——— 1 Ax 4t
Ax :‘ *

a4+t
J
+Hj+!,’2

(p |
_ U r.1+l J .
D vy =2
<Z @) == lQJ At Ax.
Similar to the proof of Theorem 3.1, we have

Ax Ax -0

Y. o)

S

Ig"l {as 41 - 0, 4x = 0).

Thus

ie.

in the weak sense. |

4. THE SYSTEM OF HYPERBOLIC
CONSERVATION LAWS

Consider the system of conservation laws,

o,
at 6x (4.1)
u=(lll,.--, um)Ts f( (fl!' fm) '

We now extend the essentially conservative scheme to
approximate Eq. (4.1). Suppose that v(w;.u;,,) i5 some
kind of averaging, such as Roe’s averagmg [9], of u; and
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#; 1, A(v)=20f/6ul,_, is the Jacobian matrix, a¥, ,, and
RY_,, are the kth eigenvalue and the eigenvector of A(v),
respectively. Let ¢, , be the kth component of 47, | ,u=

n ” .3
uj,,—u} along RY ;e

L

" _— k k
Aj+ 124= Z d;+ 2R
k=1

then the first-order scheme can be written as

u}’“:u}’-— ),(h;’+ uz‘hf—uz)s (4.2)
hi o= (f +570
Z el die1aREL ,) (4.3)

where A= At/dx. The difference between (4.3) and the
Lax—Wendroff numerical flux is

ok k k
— 4 Ilaj+1/2l)dj+l,‘2Rj+U2‘

(4.4)

m
¢j+ll2=% Z |af+1,2L (1

k=1

Then we can construct a second-order essentially conser-
vative approximation of Eq. (4.1) as

W = = M = B ) + A0, (4.5)
0= (0! 07V, (46)
5, 12 1d}_ )
k_ oo J J
Q; = —min {Mmax(l, T ix )
) 43 |8 B 1,2|} s, @7

Sk =sign(¢}, ,, — ¢;_1,,), M is a positive number,

k=1tom;

¢, .- is kth component of §,, |, where

b k k k
¢’;+1/2 3 Z |a;+1,f2| Alaj+l/2|)gj+1/2Rj+1fl

i k k R
gj+1,'2=mlnm0d(dj—1/2+‘Dj+l/2’df+1f'2’d1+3!2 Diiin)
L _ i k k k _
D}, = minmod(d;_,—dj_ 3!2’d_r‘+1/2 45_1p)

R k k
DH]',z—mmmod(de dj+l,‘2‘ sz —d; Fe3)
Similarly as in scalar case, we can prove

THEOREM 4.1, Scheme (4.51(4.7) is a second-order
essentially conservative approximation of Eq. (4.1},
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5. NUMERICAL RESULTS

In this section we give some numerical results to show the
performance of the essentially conservative scheme con-
structed in this paper.

1. Initial problem of a scalar linear equation. We choose
the following problem to show the accuracy of the scheme
in smooth region of solutions:

ou 6u4

A E_O’ (x, N[0, w)x(—20, ), (51)

u(x, 0)=sin n{x + 1), Xx€(—o0, ). (5.2)
The computation is carried out in [0, 2}. Periodic bound-
ary conditions are given at x =0 and x=2. Twenty-one
mesh points are equally spaced in [0, 2]. The CFL num-
ber = 0.5 and the constant M is chosen to be five, Figure 5.1
is the result at 1 =4, which shows that the essentially conser-
vative schemne gives good result even at the local extreme
points. The solid line is the exact solution and the symbol
“+4” represents the numerical solution (other figures are
same).

13

FIGURE 5.2
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2. Scalar moving shock wave problem. The following
problem shows that the essentially conservative scheme can
obtain the correct shock wave position. Consider the scalar
inviscid burger’s equation

Ju ou
57+u§—0, (x, e [0, oyx{—ow, x), (53}
10, if x<0
”(x’o)_{ 0, if x>0 4

The CFL number is (.5, the constant M is 5, and the space
mesh size Ax = 1. Figure 5.2 is the result at the 351th time
step. From the result it can be shown that the scheme can
give a very correct shock wave position even after a long
computation time. When M is chosen larger than 5 the
scheme becomes conservative; the numerical results not
presented here are similar to Fig. 5.2,

3. Shock wave tube problem [ 10]. Consider the Euler
equations of gas dynamics with a discontinuous initial
value,

Qu af(w) .
5; ax '07 (xs t)e[os (I)))((_CO, Cﬂ}, (5‘5)
Wy, if x<0
”’(x’o):{w,e, if x>0, (36)

Where w = (u, pu, pE)T, f(w)= (pu, p+ pui®, u(p+ pE)"; u,
p, p, E are velocity, pressure, density, and total energy of gas
in unit mass, We use G. A. Sod’s initial value to show the
performance of the scheme in shock wave capturing,

(.pL7 Prs u!_)=(15 ]5 O):
(Pr Prstig)=(0.1,0.125,0) [10].

To improve the resolution of shock waves and contact
discontinuities, we introduce here an artificial compression
technique. In the scalar case, the technique can be
implemented as follows: apply the scheme to a modified
equation of Eq. (3.1). The modified one can be written in
form

O, 3/ () + g(w))

ot ax =0

(5.7)

where

g;=max{0, [minmod(2L;_,,,, L;, ,»)l,

|minmod(L;_ 5, 2L, 12} sign(L; . /2)

and
n

Lijin= %fa,ﬂ,:zl (1—4 ]a;+ al)

X (4 ypu—minmod(d; j,u, 4, pu, A, 35u)).
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The artificial compression scheme can be written as

u{r+! .

= “;-' - i(h,w 172 “’?;‘— 1/2)"‘ AQ;’
Rivip= 15(.{.+L+ 1= G20 Apnt)
fivit g —Si—&

Uppr— Y

- uj'_’éu.i+l’
Q1=

Uy=U; 13

Q, is same as (3.6). By applying above technique to each
characteristic field, one can obtain an artificial compression
scheme for system cases.

Figures 5.3a-d give the results at the 50th time step with
an artificial compression scheme. 101 mesh points are
equally placed in [0, 1], and the CFL number = 0.95. M is
chosen to be 50. The numerical results show that the essen-
tially conservative scheme with artificial compression gives
the correct positions of shock wave and contact discon-
tinuity and the resolution of the shock wave and contact
discontinuity is also quite good.

6. CONCLUSION

The numerical resuits and theoretical analysis show that
the essentially conservative scheme of this paper not only
have good properties but also they can get good results in
real computations. From the construction of the scheme, it
can be seen that when M is chosen large enough for a fixed
grid, the scheme tends to a second-order scheme of conser-

vative form. So in real computations, the conservation error
would not increase when M is chosen to be sufficiently large.
From the numerical results, we can see that the scheme can
give correct positions of discontinuities and does not
generate too much oscillation even we cheose a CFL num-
ber near one, which verifies the analysis in the remark of
Theorem 3.2. As further research, we will consider the
construction of a two-dimensional essentially conservative
scheme. For two-dimensional cases, it has been proven in
[47] that a second-order TVD conservative scheme does not
exist. By the idea of this paper, we can construct an
essentially conservative second-order TVB scheme in the
two-dimensional case.
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